3D Convolutional Neural Network for Object Recognition
نویسندگان
چکیده
3D Object recognition is an important task in computer vision applications. After the success of convolutional neural networks for object recognition in 2D images, many researchers have designed convolution neural network (CNN) for 3D object recognition. The state of art methods provide favourable results. However, the availability of large/dynamic 3D dataset and computational complexity of CNN are the biggest challenge in 3D CNN. In this paper, a model for object recognition problem using volumetric data representation has been proposed. The aim of this paper is to improve CNN architecture for volume based 3D objects. We implemented two separate CNN architectures and tested them on ModelNet datasets, which represent data in the form of CAD models. We compare our results with VoxNet, which is a state-of-art recognition method.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملLightNet: A Lightweight 3D Convolutional Neural Network for Real-Time 3D Object Recognition
09.15 10.45 Paper Session I o Exploiting the PANORAMA Representation for Convolutional Neural Network Classification and Retrieval Konstantinos Sfikas, Theoharis Theoharis and Ioannis Pratikakis o LightNet: A Lightweight 3D Convolutional Neural Network for Real-Time 3D Object Recognition Shuaifeng Zhi, Yongxiang Liu, Xiang Li and Yulan Guo o Unstructured point cloud semantic labeling using deep...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملA study of the effect of noise and occlusion on the accuracy of convolutional neural networks applied to 3D object recognition
In this work, we carry out a study of the effect of adverse conditions, which characterize real-world scenes, on the accuracy of a Convolutional Neural Network applied to 3D object class recognition. Firstly, we discuss possible ways of representing 3D data to feed the network. In addition, we propose a set of representations to be tested. Those representations consist of a grid-like structure ...
متن کاملPoint-wise Convolutional Neural Network
Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this paper, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network i...
متن کامل